

DRIFT COM Interface Guide

ESR/D1000846/SUG02/Issue 5

12h August 2011

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 i

Authorisation Sheet

Report Title: DRIFT COM Interface Guide

Customer Reference:

Project Reference: D1000846

Report Number: SUG03

Issue: Issue 5

Distribution List:

Author: E Walton 12/08/2011

Reviewed: J E Carlisle 12/08/2011

Authorised: G A Tickle 12/08/2011

© COPYRIGHT ESR Technology Ltd

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 ii

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 iii

Contents

1.0 INTRODUCTION ..1

2.0 MEMBERS OF DRIFT DATA3

3.0 METHODS AND PROPERTIES OF DRIFT MODEL..............13

4.0 METHODS AND PROPERTIES OF CLOUD14

5.0 EXAMPLE OF CREATING A DRIFT SCENARIO IN VBA........19

6.0 RETURNING RESULTS...22

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 iv

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 1

1.0 Introduction

DRIFT 3.1 can be used via Excel through the use of the driftWrapper.dll and its associated
driftWrapper.tlb. Although this should automatically be set up on installation, it can be configured by
going to the Visual Basic Editor (VBE) and going to Tools / References and clicking on browse to
find the driftWrapper.tlb. DRIFT can be used through Visual Basic for Applications (VBA) to
generate DRIFT input files, save, run and load .drift files as well as extract and analyse data from a
completed DRIFT scenario.

Depending on your IT set-up you may need to copy the file excel.exe.config (which is packaged
with the DRIFT install) to the same location as your Microsoft Excel executable (Excel.exe). If
driftWrapper.tlb is not recognised in the Excel VBA editor then it is likely that you will need to
perform this step before you can use the COM wrapper. When you next open Excel it should pick
up the excel.exe.config file automatically and allow you to use the functionality contained in the
driftWrapper.dll.

The DRIFT library is hierarchical, beginning with the DRIFT Model class which contains base level
methods, such as save and run, as well as the DRIFT Data class to set model properties. The
DRIFT Data class extends down through many classes, in which the properties for a full DRIFT run
can be set. Figure 1 shows an overview of the class hierarchy used in DRIFT. A full list of members
of each class can be found by pressing F2 in the VBE window and searching for the class name.
The structure of DRIFT as viewed from VBA mirrors that of the Drift.exe counterpart and so more
useful information may be found from the DRIFT User Guide.

VBA can be used to input all data into DRIFT to create a new model. However, this is a little
complicated as it is relatively unassisted compared to entering data through the Drift.exe directly.
Section 2.0 details all properties within the DRIFT Data class and can be used as a guide to create
a complete DRIFT Data set, ready to be set as input data to the DRIFT Model. Section 3.0 details
the methods and properties of a DRIFT Model including how to save, load and run DRIFT from VBA
and then return results. An example of how to input and save a .drift file from VBA is provided in
Section 5.0.

VBA can also be used to load and run existing .drift files which can then be used to retrieve results
from a run .drift file. Section 6.0 discusses returning results through VBA to Microsoft Excel and
provides an example of how to do so.

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 2

PasquillWeatherData

Or

HoltslagWeatherData

Or

MoninObukhovWeatherData

InstantaneousTerminationCriteria

CompositionData

GaseousMixtureData

Or

TwoPhaseMixtureData

MomentumJetExitData

Or

LowMomentumAreaSourceExitData

Heading

Description

Toxic-
TargetData

Flammable-
TargetData

Preferences

Ground-
TransferData

WeatherData

SourceDataDrift Model

Save ()

Drift Data

Run ()

Load ()

Methods to
return
results

Obstacle
Collection

InstantaneousSourceData

Or

ContinuousSourceData

MixtureData

Location (as column vector)

addToxicSubstanceData (toxicSubstanceData)

addConcentrationCriteria (toxicCriteria (substanceCriteria))

addDoseCriteria (toxicCriteria (substanceCriteria))

Building

Fence

FiniteFence

SteadyReleaseSourceData

Or

SinpleTimeVaryingSourceData

ContinuousSourceExitData

ContinuousTerminationCriteria

SingleComponentCompositionData

Or

MultiComponentCompositionData

Contaminant

MixtureInformation

MixtureName

AddComponent as a MixtureComponent

UseFiniteDurationModel

Substance Database
(Substance)

PasquillWeatherData

Or

HoltslagWeatherData

Or

MoninObukhovWeatherData

InstantaneousTerminationCriteria

CompositionData

GaseousMixtureData

Or

TwoPhaseMixtureData

CompositionData

GaseousMixtureData

Or

TwoPhaseMixtureData

MomentumJetExitData

Or

LowMomentumAreaSourceExitData

Heading

Description

Toxic-
TargetData

Flammable-
TargetData

Preferences

Ground-
TransferData

WeatherData

SourceDataDrift Model

Save ()

Drift Data

Run ()

Load ()

Methods to
return
results

Drift Model

Save ()

Drift Data

Run ()

Load ()

Methods to
return
results

Obstacle
Collection

InstantaneousSourceData

Or

ContinuousSourceData

MixtureData

Location (as column vector)

InstantaneousSourceData

Or

ContinuousSourceData

MixtureData

Location (as column vector)

addToxicSubstanceData (toxicSubstanceData)

addConcentrationCriteria (toxicCriteria (substanceCriteria))

addDoseCriteria (toxicCriteria (substanceCriteria))

addToxicSubstanceData (toxicSubstanceData)

addConcentrationCriteria (toxicCriteria (substanceCriteria))

addDoseCriteria (toxicCriteria (substanceCriteria))

Building

Fence

FiniteFence

Building

Fence

FiniteFence

SteadyReleaseSourceData

Or

SinpleTimeVaryingSourceData

ContinuousSourceExitData

ContinuousTerminationCriteria

SingleComponentCompositionData

Or

MultiComponentCompositionData

Contaminant

MixtureInformation

MixtureName

AddComponent as a MixtureComponent

UseFiniteDurationModel

Substance Database
(Substance)

Figure 1: An overview of the class hierarchy used i n DRIFT. All aspects of the DRIFT Data tree need to be set before any
other method on DRIFT Model can be called. Classes in grey can be set to default values if no distinct changes to any of the
settings are necessary. In such a case the user doe s not need to enter any data into that class.

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 3

2.0 Members of DRIFT Data

Below is a table of read/write properties belonging to the DRIFT Data class and any
subsequent classes. These properties should be input before driftModel.run() or
driftModel.save() is called. Once all data has been entered into the DRIFT data it can then be
set to the inputData on the DRIFT model class ready to be run or saved.

 “Property name” is the name of properties belonging to the data class of the current sub
heading. The “Description” column provides a brief description of what the property is. “Type”
provides information about what type of input the code is expecting. The “units” column gives
the units of the input and the valid range column states the appropriate range any input value
should lie within.

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 4

Property Name Description Type Units Valid

Range
DRIFTData
Heading The name of the file. String None Any string
Description A description of the file. Can be multiple lines. String None Any string
IsDataValid Returns a Boolean stating whether is possible to

save/run the DRIFT Data or not. If a string is
passed in as an argument, a reason for any
invalidity will be returned in that string.

Boolean None

SourceData
MixtureData Must be set to MixtureData. See MixtureData

section.
MixtureData

Localtion The location of source in x,y,z which needs to be
set as a ColumnVector (x is aligned with East, y
along North and z upwards). A demonstration of
this is given in section 5.0.

Double metres Any value

InstantaneousSourceData
CrossWindRadius Radius of cloud perpendicular to wind direction. Double metres > 0
DownWindRadius Radius of cloud parallel to wind direction. Double metres > 0
IsUnitAspectRatio If set true assumes height of cloud is equal to the

radius of cloud.
Boolean None True/False

Mass The mass of the released cloud. Double Kg > 0
TerminationCriteria Termination criteria to be set as

InstantaneousTerminationCriteria class. If using
default values can set “= New
InstantaneousTerminationCriteria”

Instantaneous-
TermiationCriteria

ContinuousSourceData
ExitData Needs to be set as continuousSourceExitData,

which can in turn be set to MomentumJetExitData
or LowMomentumAreaSourceData.

ContinuousSource-ExitData

TerminationCriteria Needs to be set as ContinuousTerminationCriteria.
If using default values set to “= New
ContinuousTerminationCriteria”

ContinuousTerminationCriteria

SteadyReleaseSourceData
ReleaseRate The rate of gas cloud released. Double kg/s > 0
Duration The duration of the release. Double Seconds > 0

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 5

Property Name Description Type Units Valid
Range

EndTime READ ONLY. The time at which contaminant stops
being released.

Double Seconds > 0

UseFiniteDurationModel Set to true to enable a finite duration release. Boolean None Yes/No
StartTime The start time of the release. Double Seconds ≥ 0
SimpleTimeVaryingSourceData
CloudSegment() READ ONLY. Argument takes an index and

returns the SteadyReleaseSourceData cloud
segment associated with the index.

SteadyReleaseSourceData

divideIntoDurationSegments() Takes a tolerance and minimum segment duration
as arguments. Divides a continuous exit profile into
segments as specified by the arguments given.

ReleaseRateProfile Used to set the profile of release by time. Needs to
be set to a UserDefinedReleaseRateProfile which
enables release rates at up to 100 time intervals to
be set.

UserDefinedReleaseRateProfile

NumberOfSegments READ ONLY. Returns the number of segments the
release profile is calculated to.

Long

UserDefinedReleaseRateProfile
addDataPoint() Sets the release profile by adding a point at a time.

Takes an argument of time as a double and a
second argument of the corresponding release
rate as a double.

Double Seconds
kg/s

MomentumJetExitData
AngleFromHorizontal The jet angle from horizontal. Double Degrees -90 to 90
AngleFromNorth Jet angle bearing from north. Double Degrees 0 to360
DischargeCoeffcient Coeffcient relating release rate and exit velocity.

Typically 0.61 for liquids and 0.8 for gasses.
Double None 0 to 1

OrrificeRadius The radius of circular orifice. Double Metres > 0
LowMomentumAreaSourceExitData
CrosswindSourceRadius Radius of cloud perpendicular to wind direction. Double metres
DownwindSourceRadius Radius of cloud parallel to wind direction. Double metres
IncludeDilutionOverTheSource Set to true to allow solver to include dilution effects

over the source location due to mixing with air.
Boolean None Yes/No

MixtureData

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 6

Property Name Description Type Units Valid
Range

CompositionData Needs to be set to CompositionData class, which
contains information on the contaminant(s).

CompositionData

ContanintnatMassFraction The fraction of cloud that is the specified
contaminant, by mass, at the source.

Double Kg/Kg 0 to 1 (pure
contaminant)

Temperature Temperature of the released gas cloud. Double Kelvin
CompositionData
HasLiquid READ ONLY. Returns if the substance(s) have a

liquid phase.
Boolean

NumberOfLiquidPhases READ ONLY. Returns the number of liquid phases
of substance(s).

Long

SingleComponent-CompositionData
Contaminant Can be set to a substance database substance or

a user defined substance. For a database
substance: Set
SingleComponentCompositionData.contaminant =
SubstanceDatabase.substance(SubstanceName
as string)

Substance

LiquidFraction The fraction of substance which is in liquid state on
exit. Only needs to be set if using a
TwoPhaseCompositionData.

Double 0 (gaseous)
to 1 (pure
Liquid)

SubstanceDatabase
DataSource Use to specify which database a substance will be

found from, either DataSourceType_SPI or
DataSourceType_SRD.

DataSourceType

setFilePath() Takes a file location as an argument to set where
the databases are stored. For the ESRsubstance
database a full directory should be set along with
the ending “\ESRsubstance.mdb”. For SPI files the
folder contining the SPI files should be given

String None

Substance Sets a substance from a database to the
composition data. Takes an argument of the
substance name as a string.

String

MultiComponentCompositionData
MixtureInformation Specifies the substances and their properties.

Needs to be set as MixtureInformation class.
MixtureInformation

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 7

Property Name Description Type Units Valid
Range

IsFlammable READ ONLY. Returns whether the mixture is
flammable as a byte.

Boolean

LowerFlammableLimit READ ONLY. Returns the LFL. Double
saturatedVapourPressure() Takes a temperature as an argument and sets the

saturated vapour pressure of the mixture.
Double

saturationTemperature() Takes a pressure as an argument and sets the
saturationtemperature of the mixture.

Double

UpperFlammableLimit READ ONLY. Returns the UFL. Double
MixtureInformation
addComponent() Adds a component to the mixture. Must be set to a

MixtureComponent.
MixtureComponent

DefineByMass Set true to define the mixture by mass rather than
moles.

Boolean None Yes/No

MixtureName The name of the mixture

String None Any String

MixtureComponent
Substance The substance which forms this component of the

overall mixture. Must be set as a substance which
can be set to be a database substance: .substance
= �atabase.Substance(Substance as string).

Substance

AmountOfVapour Set the fraction of this component which is vapour. Double
AmountOfLiquid Set the fraction of this component which is liquid Double
LiquidPhaseIndex Sets the liquid Phase index, which can take the

following values: 0 – Miscible with Water, 1 –
Liquid Phase 1 or 2 – Liquid Phase 2.

Long None 0,1,2

GaseousMixtureData – Contains no further properties to MixtureData but n eeds to be set”= New GaseousMixtureData” so the m odel knows which
class of mixture data to use.
TwoPhaseMixtureData
Pressure The Pressure of the substance on release Double Pa
RainoutFraction The fraction of substance which will undergo

rainout as liquid drops on exit.
Double Fraction 0 to 1

WeatherData
PerformAutomaticMixingHeightCalculation Determines whether the solver automatically

calculates the mixing (or inversion) height or if the
user inputs a value.

Boolean None True/False

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 8

Property Name Description Type Units Valid
Range

RelativeHumidity The relative humidity as a fraction of saturated
conditions.

Double None 0 to 1.07

RoughnessLength The characteristic roughness length of the ground. Double Metres
Temperature The temperature at the reference height. Double Kelvin
UserInputMixingHeight Use to manually input the height of the

atmospheric boundary layer.
Double

Metres > 0

WindAngleFromNorth The angle between north and the direction the
wind is blowing from. 0 means the wind is blowing
from the north.

Double Degrees 0 to 360

WindReferenceHeight The height at which stated wind speed is set. Double Metres
PasquillWeatherData
PasquillStability Pasquill stability class. Needs to be set as a

stability class. From A: very unstable to F: stable.
Stability Stability_A to

Stability_F
WindSpeed Wind speed in m/s Double Metres
HoltslagWeatherData
CloudCover Fraction of sky covered by cloud. Double None 0 to 1
Year/Month/Day/Hours/
Minutes/Seconds

Time setting Double App.
Units

Lattitude Release Latitude. Double Degrees -90 to 90
Longitude Release Longitude. Double Degrees -180 to 180
Windspeed Wind speed in m/s. Double m/s > 0
MoninObukhovWeatherScheme
InverseObukhovLength The inverse Obukhov length, scaling length for

atmospheric boundary layer .
Double /m

Ustar The friction velocity. Scaling velocity for lower
parts of atmospheric boundary layer.

Double m/s > 0

ToxicTargetData
MaximumExposureDuration Maximum time exposed to Toxic cloud. Double Seconds
NumberOfConcentration-Criteria READ ONLY. Returns the number of concentration

criteria on model
Integer None

NumberOfDoseCriteria READ ONLY. Returns the number of dose criteria
on model

Integer None

NumberOfToxicSubstances READ ONLY. Returns the number of toxic
substances set to model.

Long

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 9

Property Name Description Type Units Valid
Range

Substance_Data READ ONLY. Takes an index as an argument and
returns the substance data associated with the
index.

ToxicSubstanceData

ThresholdConcentration The Threshold concentration Double
addConcentrationCriteria() Adds a toxic concentration exponent for each toxic

substance in model. Must be set as a
ToxicCriteria which in terms takes a
SubstanceCriteria class as an argument.

ToxicCriteria

addDoseCriteria() Adds a toxic dose exponent for each toxic
substance in model. Must be set as a
ToxicCriteria which in terms takes a
SubstanceCriteria class as an argument.

ToxicCriteria

addToxicSubstanceData() Sets a new toxic subatance’s data to model.
Argument needs to be given as a
toxicSubstanceData class.

ToxicSubstanceData

UseTimeAveraging Tells the model whether or not to account for the
effects of time-averaging (lateral and vertical
meander). Note that flammable results never
account for time-averaging.

Bool

AveragingTime The averaging time over which toxic dose and
concentrations will be calculated.

Double Seconds 0 -

ToxicDoseFractionMethod Tells the model which method to use for
calculating toxic dose fraction (refer to user guide
for explanation of these).

DoseFractionMethod

ClearConcentrationCriteria Clears all concentration criteria
ClearToxicSubstanceData Clears all toxic substance data.
ConcentrationCriteria READ ONLY. Takes an index as an argument and

returns the concentration criteria associated with
the index.

ToxicCriteria

DoseCriteria READ ONLY. Takes an index as an argument and
returns the dose criteria associated with the index.

ToxicCriteria

IndoorsLagTime The toxic lag time for indoor locations. Double Seconds 0 -
IndoorsVentilationRate The rate of ventilation for indoor locations. Double Kg/s 0 -
ToxicSubstanceData
SubstanceName The name of the toxic substance String None

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 10

Property Name Description Type Units Valid
Range

ToxicDoseExponent Toxic exponent. The power to which concentration
is raised when calculating toxic dose.

Double None

ToxicCriteria
addSubstanceCriterion() Add a substance criteria. Must be set to a

SubstanceCriteria class, in which the toxic
substance name and concentration or dose level
of interest need to be set.

SubstanceCriteria

clearCriteria() Clears the toxic criteria.
Location The location where toxic effects will be evaluated.

Must be set to a ReceiverLocation (possible values
ReceiverLocationIndoors and
ReceiverLocationOutdoors).

ReceiverLocation None See
description

NumberOfSubstanceCriteria READ ONLY. Returns the number of substance
criteria.

Long

SubstanceCriterion READ ONLY. Takes an index as an argument and
returns the substance criterion associated with the
index.

SubstanceCriteria

FlammableTargetData
addTargetLevels() Takes a flammable target level, as a fraction of

LFL, as an argument.
Double Fraction

of LFL
 > 0

clearTargetLevels() Clears the flammable target levels.
UserDefinedFlammabilities If set to true allows user to specify the LFL and

UFL of the flammable sunbstance.
Boolean None Yes/No

NumberOfTargetLevels READ ONLY. Returns the number of flammable
target levels.

Long

TargetLevel READ ONLY. Takes an index as a Long and
returns the flammable target level associated with
the index.

Double

UpperFlammableLimit Allows the Upper Flammable limit of current
substance to be set.

Double 0 – 100

LowerFlammableLimit Allows the Lower Flammable limit of current
substance to be set.

Double 0 – 100

GroundTransferData – If default values are to be used then can be set “= New GroundTransferData”.
MeanDropRadius Mean radius of gas cloud particles. Double Metres > 0
SurfaceTemperature Temperature of the ground surface. Double Kelvin > 0

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 11

Property Name Description Type Units Valid
Range

UseDeposition Set to true to allow model to deposit mass to the
ground

Boolean None Yes/No

UseHeatTransfer Set to true to allow model to transfer heat to the
ground.

Boolean None Yes/No

Preferences – If default values are to be used then can be set “= New Preferences”.
ContinuousMaximumSlice-Seperation The maximum distance step of slices for the

continuous model.
Double Metres > 0

ContinuousMinimumSlice-Seperation The minimum distance step of slices for the
continuous model.

Double Metres ≥ 0

DistancePrecision The precision with which to solve for distances to
concentration and dose.

Double Metres > 0

Finite Duration Model Time Series
Precision

Determines the accuracy to which DRIFT
calculates the dose received in the finite duration
and time-varying models. The smaller the value
the more accurate the results, but the longer the
model will take to run.

Double None ≥ 10-9

Finite Duration Model Time Series Extent This parameter is used in the calculation of dose in
the finite duration and time-varying models. It
controls how far into the tails of the dose
distribution to calculate the concentration time
series. The number entered is internally multiplied
by a typical timescale taken for the cloud to pass
through the particular point of interest. Larger
values of this parameter lead to more accurate
results. The default value is 3.

Double None ≥ 0

InstantaneousMaximumSlice-Seperation The maximum distance step of slices for the
instantaneous model.

Double Metres > 0

InstantaneousMinimumSlice-Seperation Minimum slice separation for the continuous
model.

Double ≥ 0

InverseBowdenRatio The inverse Bowden ratio. Double None
MinimumSegmentDuration The minimum duration of a segment when

converting from a a time varying release to
discrete segments

Double Seconds > 0

NumberOfCentrelineResults The number of results which will be calculated and
used to generate a contour plot.

Long None > 0

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 12

Property Name Description Type Units Valid
Range

ReleaseSegmentorTolerance Sets the maximum fractional change in release
rate between segments.

Double None > 0

SolverTolerance Determines the accuracy to which DRIFT will solve
its equation set.

Double None 10-9-10-1

TablularOutputDecimal-Precision The number of decimal places results will be given
to in tables.

Long None > 0

TimePrecision The precision when solving for the time of
maximum concentration or maximum flammable
volume etc.

Double Seconds > 0

ObstacleCollection – If no obstacles are needed then can be set “= New O bstacleCollection”.
addObstacle() Adds an obstacle to model. Takes an Obstacle as

an argument
Building, Fence or FiniteFence

clearObstacles() Clears all obstacles from the collection.
NumberOfObstacles READ ONLY. Returns the number of obstacles in

the collection.
Long

Obstacles READ ONLY. Takes an index as an argument and
returns the obstacle data associated with the
index.

Obstacle

Building
Angle The angle between North and the Length side of

the building.
Double Degrees 0 to 360

CentreX The position of the centre of the obstacle in the x-
direction.

Double Metres

CentreY The position of the centre of the obstacle in the y-
direction.

Double Metres

Height The height of the obstacle. Double Metres > 0
Length The length of the obstacle Double Metres
Name The name of the obstacle. String None Any String
Width The width of the obstacle. Double Metres
Fence
Height The height of the fence. Double Metres > 0
Name The name of the obstacle. String None Any String
Position The position of the fence. Double Metres
FiniteFence – See Building. Properties are the same but no wid th is specified.

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 13

3.0 Methods and Properties of DRIFT Model

Methods act on the DRIFT Model to either compute results or save/run/load files. They often
require some form of input, which could be data or a filename, and then will return an output.
Some of the methods on DRIFT model return cloud results and more detail on how to do so
is given in section 6.0.

Method Name Inputs Returns Description
run None directly,

but requires all
necessary input
information to
be completed.

Nothing directly,
but cloud results
can then be
evaluated.

This runs the solver for the given
model scenario. A model can be
run() after either inputting all
necessary information or after load()
of a previously saved file.

save() Filename as
string (including
the .drift
extension)

.drift File When save() is called a html format
.drift file is created in the file directory
provided as input. This method saves
all properties as well as any results
from the solver if run() has been
called.

load() Filename as
string (including
the .drift
extension)

Loads properties
into VBA

When load() is called the .drift file is
read into the VBA which can then be
run() or properties can be checked or
changed

loadLegacyFile() Filename as
string including
the appropriate
.DIN or .EJC
extension

Loads up
properties into
VBA

Similar in function to the load method
but enables loading of old DRIFT
(version 2) and EJECT files.

computeFlammable-
CentrelineResults

Requires input
data to be
entered and
run() to have
been called.

Flammable
fraction of LFL
along the
centreline.

 Computes the flammable centreline
results so that flammable centreline
results can be read or a contour plot
can be made.

computeToxicCentre-
lineResults

Requires input
data to be
entered and
run() to have
been called.

Toxic
concentrations
along centreline

Computes the toxic centreline results
so that toxic centreline results can be
read of a contour plot can be made.

cloud Requires input
data to be
entered and
run() to have
been called.

Cloud results Cloud contains many functions to
return a large variety of calculations
from DRIFT. These will be detailed
below.

ModelVersion None Returns the
current version
string.

Returns a string detailing the precise
version of DRIFT being used (e.g.
“3.1.1”).

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 14

4.0 Methods and Properties of Cloud
Methods act on the DRIFTModel.Cloud to return information about the concentration and
dose profiles. There are too many methods to list individually, so instead we present a broad
outline of the naming conventions used. The methods fall into three categories:

• Methods to ask for concentration/dose results at a given location;
• Methods to calculate distances to a given concentration/dose;
• General purpose utility methods.

The following utility methods are available:

Method Name Inputs Returns Description
isTimeDependent None Boolean Returns true if the cloud

concentration profile varies with
time (e.g. instantaneous cloud);
false otherwise (e.g. steady
continuous).

numberOfComponents None Integer Returns the number of distinct
species present in the cloud,
including air and water.

numberOfLiquidPhases None Integer Returns the number of distinct
liquid phases that can exist in the
cloud.

Substance(index) Integer ISubstance Returns the substance data
associated with component index .
Air is component 0; water is 1; the
first contaminant is 2 etc.

distancePrecision None Double
setDistancePrecision Double None

Tells the cloud how accurately to
compute distances to any given
dose/concentration.

IsIndoors Boolean Set this to true if indoor results are
required; false if outdoors ones are
required.

ConcentrationAndDoseUnits IConcentrationField::Units This can be set to PPM_Min or
Natural . In the former case the
units of concentration will be ppm
and dose will be ppm^n.min, where
n is the toxic exponent; in the later
case the units of concentration will
be mol/mol and the dose will be
(mol/mol)^n s.

isFlammable None Boolean Returns true if the cloud contains
flammable materials; false
otherwise.

setToxicConcentrationCrite
ria(SubstanceName, Value)

String,
Double

None Sets the current toxic concentration
level of interest for SustanceName
equal to Value (e.g.
setToxicConcentrationCriteria(“Am
monia”, 100ppm). This value will
be used when calculating
distances to toxic concentrations.

setToxicDoseCriteria String,
Double

None Sets the current toxic dose level of
interest for SustanceName equal
to Value .

maximumTime None Double Returns the maximum time that the
results are valid to.

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 15

Method Name Inputs Returns Description
maximumDownstreamDistance None Double Returns the maximum downstream

distance that the results are valid
to.

maximumUpstreamDistance None Double Returns the maximum upstream
distance that the results are valid
to.

maximumCrossStreamDistance
(downstreamDistance,
angleFromHorizontal)

Double,
Double

Double Returns the maximum cross-
stream distance that the results are
valid to at the specified
downstream distance (s) and
angleFromHorizontal (θ). See
below for more details.

maximumCrossStreamDistance
AtReceiverHeight(downstrea
mDistance, receiverHeight)

Double,
Double

Double Returns the maximum cross-
stream distance that the results are
valid to at the specified
downstream distance (s) and
receiver height (zc). See below for
more details.

maximumHeight(time) Double Double Returns a height that corresponds
to when the concentration profile
becomes ‘negligible’ at a given
time. This depends on the
definition of ‘negligible’ of course,
so this method should be used with
caution.

Most of the remaining methods on the Cloud have the following naming convention:

• Methods whose names begin with the word maximum or max return the worst case
cloud results over all time (these methods often give the worst case time via a
passed-by-reference argument); methods that do not begin with maximum or max
return the cloud results at a user specified time. For example:

concentration(substanceId, time, position) returns the
concentration at the given position of the substance referenced by
substanceId (0=air; 1=water, 2=first contaminant etc.) at the given time .

maximumConcentration(worstCaseTime by ref, substanceId,
position) returns the worst case concentration at the given position of the
substance referenced by substanceId . The worstCaseTime parameter is
passed by reference and will be set by the code within the method.

• Methods ending in the words AtDistance return results based on a coordinate

system (s, d, θ), where s is the downstream distance along the centreline trajectory of
the cloud, d is the cross-stream distance perpendicular to this trajectory from the
point specified by s, and θ is the angle that this cross-stream spoke makes to the
horizontal. Coordinates in the form (s, d, θ) can be converted into standard Cartesian
coordinates (x, y, z) via the calculateCoordinates method. The coordinate system
can be slightly different depending on whether the user is interested in the worst case
results or the results at a particular time of interest.

• Methods ending in the words AtDistanceAndReceiverHeight return results based

on a coordinate system (s, h, zc), where s is the downstream distance along the
centreline trajectory of the cloud, h is the horizontal cross-stream distance
perpendicular to this trajectory from the point specified by s, and zc is the receiver

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 16

height. Coordinates in the form (s, h, zc) can be converted into standard Cartesian
coordinates (x, y, z) via the calculateCoordinatesAtReceiverHeight method. The
coordinate system can be slightly different depending on whether the user is
interested in the worst case results or the results at a particular time of interest.

• Methods containing the word Flammable work in terms of fractions of the lower

flammable limit. For instance, the method flammableConcentration will return the
fraction of the LFL at the specified time and location. Methods such as
downstreamDistanceToFlammableConc take the LFL fraction of interest as an
argument.

• Methods containing the word Toxic work in terms of toxic fraction, calculated relative

to the concentration/dose criteria set by the user (see
setToxicConcentrationCriteria and setToxicDoseCriteria above). For instance, a
mixture of chlorine and bromine might have concentration criteria of 100ppm for
chlorine and 200ppm for bromine. If the actual concentration was 300ppm for chlorine
and 400ppm for bromine then the toxic fraction (using HSE’s methodology) would be
300/100 + 400/200 = 5.

• Methods containing neither of the words Flammable or Toxic usually return just the

results for a single component in whatever units have been set (e.g. ppm, see
ConcentrationAndDoseUnits above). The substanceId is usually passed into these
methods as an argument.

• Methods such as downstreamDistanceToMaximumConc return the downstream

distance to the maximum concentration/dose. Usually the user will have to pass in an
argument by reference to retrieve the value of the concentration/dose at this
downstream distance (e.g. downstreamDistanceToMaximumConc(maxConc, 30,
2) will return the downstream distance to the maximum concentration of substance
number 2 at 30s and maxConc will be set to the value of the concentration at this
distance). The use of ‘maximum’ here does not necessarily indicate that the function
is the worst case over all times because it is not at the start of the method name.

• Methods such as downstreamDistanceToConc return the distance along the cloud

centreline (measured from the source) until the concentration falls below the value of
interest. This is s in the coordinate system (s, d, θ) referred to above.
downstreamDistanceToConcAtReceiverHeight is the same function but using the
(s, h, zc) coordinates.

• Methods such as halfWidthToConc return the cross-stream distance d to the

specified concentration level for a given s and θ.

• Methods such as largestHalfWidthToConc return the largest cross-stream distance
d at a given θ and level of interest for all values of s. These methods usually require
an argument to be passed in by reference to store the downstream distance
corresponding to this largest half-width.

• The purpose of the other methods on the Cloud can be worked out from the above

conventions.

Table and graph information can also be extracted through the COM interface using the
following methods:

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 17

Method Name Inputs Returns Description
HasResults None Boolean Returns True if the cloud has

results; False otherwise.
clearResults() None None Clears the results.
NumberOfSegments None Integer In the case of the time-varying

model there may be multiple
finite duration cloud segments
that combine to give the
overall time-varying results; for
all other models there will only
be one segment.

NumberOfInstantaneousResults

/

NumberOfInstantaneousResults_2
(segment)

None /
Integer

Integer Returns the number of
instantaneous model
results/time-steps associated
with the cloud. In the case of a
low momentum area source
with dilution over the source
then the continuous model
may have also run an
instantaneous model upfront.
There is an overload of this
function suffixed with a _2 that
also takes the segment
number in the case that the
time-varying model has been
used.

InstantaneousResult(index)

/

InstantaneousResult_2(segment,
index)

Integer,
None /
Integer

Instantaneous
Slice

Returns the instantaneous
result referenced by index .
This will correspond to a single
time-step/row in the output
tables shown on the GUI.

NumberOfContinuousResults

/

NumberOfContinuousResults_2(se
gment)

None /
Integer

Integer Returns the number of
continuous model
results/distance-steps
associated with the cloud. In
the case of a pure
instantaneous model run this
will be always be zero.

ContinuousResult(index)

/

ContinuousResult_2(segment,
index)

Integer,
None /
Integer

Continuous
Slice

Returns the continuous result
referenced by index . This will
correspond to a single
distance-step/row in the output
tables shown on the GUI.

At each time/distance step the slice returned from InstantaneousResult or
ContinuousResult can be used to access that value of any of the output variables at that
step. The following methods are available:

Method Name Inputs Returns Description
NumberOfComponents None Integer Returns the number of

components in the cloud (e.g.
air, water, first contaminant
etc.)

NumberOfLiquidPhases None Integer Returns the number of distinct
liquid phases that could have
formed in the cloud.

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 18

Method Name Inputs Returns Description
NumberOfOutputVariables None Integer Returns the number of

available output variables (e.g.
temperature, density etc.)

NumberOfComponentVariables None Integer Returns the number of
available component variables.
These are variables that can
are stored on a pure
component basis (e.g. mole
fraction etc.)

NumberOfLiquidPhaseVariables None Integer Returns the number of
available liquid phase
variables. These are variables
that are stored independently
for each liquid phase (e.g.
liquid fraction etc.)

OutputValue(var) Instantaneous/
Continuous
Output Variable

Double Returns the value of the output
variable referenced by var that
is stored in the slice.

ComponentValue(var,
compIndex)

Instantaneous/
Continuous
Component
Variable

Double Returns the value of the
component variable
referenced by var that is
stored in the slice for
component compIndex .

LiquidPhaseValue(var,
liqPhaseIndex)

Instantaneous/
Continuous
Liquid Phase
Variable

Double Returns the value of the liquid
phase variable referenced by
var that is stored in the slice
for the specified liquid phase
index liqPhaseIndex .

When calling any of the methods OutputValue , ComponentValue and LiquidPhaseValue ,
the intellisense should bring up a full list of available variables. A more detailed description of
what each of these variables corresponds to can be obtained by creating a new instance of
either an InstantaneousOutputConverter or a ContinuousOutputConverter , which have
the following useful methods:

Method Name Inputs Return Descripti

outputVariableDescription(var) Instantaneous/

Continuous
Output
Variable

String Returns a descriptive
string associated with
the output variable var .

componentVariableDescription(var) Instantaneous/
Continuous
Component
Variable

String Returns a descriptive
string associated with
the component variable
var .

liquidPhaseVariableDescription(var) Instantaneous/
Continuous
Liquid Phase
Variable

String Returns a descriptive
string associated with
the liquid phase
variable var .

An example of extracting tabular and graphical results via the COM interface is presented in
Section 6.0.

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 19

5.0 Example of creating a DRIFT scenario in VBA

The following example is working VBA code which can be copied and pasted into the VBE. It
enters hardwired data into DRIFT via the driftWrapper, runs and saves a .drift file onto the C
drive. It can be extended to enter input data from a spreadsheet and/or run multiple
scenarios. The locations of the ESR substance database and the SPI files need to be set as
stated, or the code changed to their locations.

Sub Drift_Example()

 Dim driftModel As driftModel
 Set driftModel = New driftModel

 Dim inputData As DRIFTData
 Set inputData = New DRIFTData

 Dim dataSource As New SubstanceDatabase
 Call dataSource.setFilePath(DataSourceType_SRD, "C:\ESRSubstance.mdb")
 Call dataSource.setFilePath(DataSourceType_SPI, "C:\SPI_files")

 Dim myFilename As String
 myFilename = "C:\Save_Filename_One.drift"

 ' Input the model parameters

 With inputData
 .heading = "Run one"
 .description = "Insert Description Here"
 Set .sourceData = setSourceData()
 Set .weatherData = setWeatherData()
 Set .toxicTargetData = setToxicTargetData()
 Set .flammableTargetData = setFlammableTarg etData()
 Set .groundTransferData = New groundTransfe rData
 Set .Preferences = New Preferences
 Set .Obstacles = New obstacleCollection
 End With
 ‘ setSourceData is a separate subroutine to set the s ource data and so on

 Dim isValid As Boolean
 Dim messages as String

 isValid = inputData.isDataValid(messages)
 If isValid = False Then MsgBox messages: Exit S ub
 ‘ Checks to see if data is valid. If data is not vali d a message box describes the error
and the sub is
 ‘exited

 Set driftModel.inputData = inputData

 ‘ Run and save the model

 Call driftModel.RUN

 Call driftModel.Save(myFilename)

End Sub
‘__ ______________________________

Function setSourceData() As sourceData

' This function sets the source data for the driftMod el described in the subroutine above

 Dim contSourceData As ContinuousSourceData
 Set contSourceData = New ContinuousSourceData

 Dim steadyData As SteadyReleaseSourceData
 Set steadyData = New SteadyReleaseSourceDat a

 steadyData.UseFiniteDurationModel = False
 steadyData.ReleaseRate = 100#
 steadyData.duration = 1800#
 steadyData.startTime = 0#

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 20

 Set contSourceData = steadyData

 Dim mixData As mixtureData

 Dim gaseousMixData As New GaseousMixtur eData

 Set mixData = gaseousMixData

 mixData.ContaminantMassFraction = 1#
 mixData.temperature = 294#

 Dim compositionData As compositionData

 Dim Database As SubstanceDatabase
 Set Database = New SubstanceDatabas e

 Database.dataSource = DataSourceTyp e_SRD
 Call Database.setFilePath(DataSourc eType_SRD, "C:\ESRSubstance.mdb"

 Dim singleSubstanceData As New SingleComponentCompositionData

 Set singleSubstanceData.Contami nant = Database.Substance("Propane")

 Set compositionData = singleSubstanceDa ta

 Set mixData.compositionData = compositionDa ta

 Set contSourceData.mixtureData = mixData

 Dim contExitData As continuousSourceExitDat a

 Dim jetData As MomentumJetExitData
 Set jetData = New MomentumJetExitData

 jetData.angleFromHorizontal = 0#
 jetData.AngleFromNorth = 90#
 jetData.dischargeCoefficient = 1#
 jetData.OrificeRadius = 0.05

 Set contExitData = jetData

 Set contSourceData.exitData = contExitData

 Set contSourceData.TerminationCriteria = New Co ntinuousTerminationCriteria

 Set setSourceData = contSourceData

 Dim location As New ColumnVector

 location.X = 0#
 location.Y = 0#
 location.Z = 0#

 Set setSourceData.location = location

End Function
‘__ ______________________________

Function setWeatherData() As weatherData

' This function sets the weather data for the driftMo del described in the subroutine above

 Dim PasquillData As New PasquillWeatherData

 PasquillData.pasquillStability = Stability_ D
 PasquillData.windSpeed = 5#

 Set setWeatherData = PasquillData

 setWeatherData.PerformAutomaticMixingHeightCalc ulation = True
 setWeatherData.relativeHumidity = 0.7
 setWeatherData.roughnessLength = 0.1
 setWeatherData.temperature = 294#
 setWeatherData.WindAngleFromNorth = 270#
 setWeatherData.windReferenceHeight = 10#

End Function

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 21

‘__ ______________________________

Function setToxicTargetData() As toxicTargetData

' This function sets the toxic target data for the dr iftModel described in the subroutine above
‘Altough this example uses Propane it is included f or example.

 Set setToxicTargetData = New toxicTargetData

 Dim substData As New ToxicSubstanceData

 substData.SubstanceName = "Propane"
 substData.ToxicDoseExponent = 1#

 Call setToxicTargetData.addToxicSubstanceDa ta(substData)

 Dim criteria As ToxicCriteria
 Set criteria = New ToxicCriteria

 Dim substCrit As SubstanceCriteria
 Set substCrit = New SubstanceCriteria

 substCrit.SubstanceName = "Propane"
 substCrit.Value = 200#
 Call criteria.addSubstanceCriterion(substCr it)

 criteria.location = ReceiverLocation_Indoor s

 Call setToxicTargetData.addDoseCriteria(criteri a)

 Call setToxicTargetData.addConcentrationCriteri a(criteria)

 setToxicTargetData.AveragingTime = 0#
 setToxicTargetData.maximumExposureDuration = 18 00#
 setToxicTargetData.IndoorsVentilationRate = 0#
 setToxicTargetData.IndoorsLagTime = 0#

End Function
‘__ ______________________________

Function setFlammableTargetData() As flammableTarge tData

' This function sets the flammable target data for th e driftModel described in the subroutine
above

 Set setFlammableTargetData = New flammableTarge tData

 Call setFlammableTargetData.addTargetLevel(1#)

 setFlammableTargetData.UserDefinedFlammabilitie s = True

 setFlammableTargetData.UpperFlammableLimit = 10 0#

 setFlammableTargetData.LowerFlammableLimit = 5#

End Function
‘__ ______________________________

Note: A more rigorous demonstration of this code is available in the Drift_Interface
spreadsheet.

On calling the method save() the error message “Attempted to read or write protected
memory. This is often an indication other memory is corrupt.” is usually a sign that some
aspect of the input data has not been set correctly. The function “IsDataValid” can be used
on the DRIFT Data class before setting the DRIFT Data to the DRIFT Model, which will
return a string of any reason why the input data would cause any problems when trying to
save.

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 22

6.0 Returning Results

Once a DRIFT Model has been run, the results for a variety of cloud conditions can be
returned to Excel. This can be done through the ComputeFlammableCentrelineResults /
ComputeToxicCentrelineResults methods or through the many cloud functions on the DRIFT
Model class. Excel can be used to easily loop through results, enter them into a spreadsheet
and analyse the results.

An example has been included to demonstrate how a contour plot of the lower flammable
limit can be created in Excel. The model first needs to be loaded or created and then run
before either of the compute centreline results or cloud functions can be called. The following
example shows how the flammable centreline results and the coordinates of the lower
flammable limit at certain downstream distances can be set into a table on an excel
spreadsheet.

Sub Output_Flammable_Results()

‘ (Insert code to load and run DRIFT scenario. This c ould be the code from section 5.0)

Dim downstreamHazardRange As Double
downstreamHazardRange = model.Cloud.maxDownstreamDi stanceToFlammableConc(1#)
 ' downstream distance to 1LFL for all times

Dim upstreamHazardRange As Double
upstreamHazardRange = model.Cloud.maxUpstreamDistan ceToFlammableConc(1#)
' upstream distance to 1LFL for all times

Dim flammableResults As ICentrelineResults
Set flammableResults = model.computeFlammableCentre lineResults_2(_

-upstreamHazardRange, downstreamHazardRange, 50)
‘ Computes the flammable centreline results

Dim distances As Range
Set distances = Worksheets("Example Output").Range("ExOutput")
‘ Set a location for outputting results. This is just an example.

Dim nResults As Integer
nResults = flammableResults.NumberOfResults

Dim j As Integer

For j = 0 To nResults - 1
 distances.Cells(j + 1, 1).Value = fla mmableResults.result(j).DownstreamDistance
 distances.Cells(j + 1, 2).Value = fla mmableResults.result(j).Value(0)
 distances.Cells(j + 1, 3).Value =
flammableResults.result(j).CrossStreamDistance(0)
Next j
‘ Writes the downstream distances, LFL values and cro ss stream distances to a range of cells in
Excel

Dim coords As ColumnVector

For j = 0 To nResults - 1

Set coords = model.Cloud.calculateCoordinates(flamm ableResults.result(j) _
.DownstreamDistance, flammableResults.result(j).Cro ssStreamDistance(0), 0)

 distances.Cells(j + 1, 4).Value = c oords.X
 distances.Cells(j + 1, 5).Value = c oords.Y
Next j
‘ The calculateCoordinates() function calculates the coordinates of a particular occurrence as
‘ specified by the arguments passed into it. This is used to generate the top part of a contour
plot.

Do While j > 0

 j = j - 1

 Set coords = model.Cloud.calculateCoordinates(flam mableResults.result(j) _
.DownstreamDistance, -flammableResults.result(j).Cr ossStreamDistance(0), 0)

ESR-IN-CONFIDENCE
ESR/D1000846/SUG02/Issue 5

 23

 distances.Cells(2 * nResults - j, 4).Value = coords.X
 distances.Cells(2 * nResults - j, 5).Value = coords.Y

Loop
‘ Sets the values of the bottom half of a contour plo t into a table in Excel.

‘** **

‘ Below is some example code to extract tabular resul ts via the COM interface
‘In this case we write a table of cloud centreline height vs. time for the instantaneous model

Dim xVar As InstantaneousOutputVariable
Dim yVar As InstantaneousOutputVariable

xVar = InstantaneousOutputVariable_Time
yVar = InstantaneousOutputVariable_LocationZ

Dim xAxisTitle As String
Dim yAxisTitle As String
Dim converter As New InstantaneousOutputConverter

xAxisTitle = converter.outputVariableDescription(xV ar)
yAxisTitle = converter.outputVariableDescription(yV ar)

Dim xVals As Range
Dim yVals As Range

Set xVals = Worksheets("Tables").Range("xVals") ‘returns “Cloud Travel Time (s)”
Set yVals = Worksheets("Tables").Range("yVals") ‘returns “Cloud Z Location (m)”

xVals.Cells(1, 1) = xAxisTitle
yVals.Cells(1, 1) = yAxisTitle

Dim nResults As Integer
nResults = model.Cloud.NumberOfInstantaneousResults
Dim index As Integer
For index = 0 To nResults - 1

Dim slice As InstantaneousSlice
 Set slice = model.Cloud.InstantaneousResult(index)

 xVals.Cells(index + 2, 1) = slice.OutputValu e(xVar)
 yVals.Cells(index + 2, 1) = slice.OutputValu e(yVar)
Next index

End sub

